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Abstract

The �diffusion� model for lateral migration flux has successfully been used to describe shear-induced
particle migration in concentrated suspensions of non-Brownian particles subject to simple shear flows.
Subsequent analyses, which included the linear momentum equation, attempted to embed this model into a
more comprehensive framework that included general inhomogeneous shear flows and their concomitant
pressure gradients. Based upon the latter, more general framework, the present paper presents a case study
of a simple suspension flow that leads to a prediction that contradicts Darcy�s law. The explicit example
considered involves the steady, radial, low Reynolds number flow of a concentrated suspension of neutrally
buoyant, non-Brownian spheres permanently confined within the annular space between two concentric
spherical shells, each shell being permeable only to the interstitial fluid. As such, the annular domain
contains a time-independent dispersion of spherical particles permanently confined within its boundaries,
while the interstitial fluid flows past these fixed-in-space �suspended� particles. The foregoing general model
for this suspension flow consists of: (i) local mass conservation equations for both the fluid and suspended
particles phases; (ii) an overall mass conservation equation for the confined particulate phase; (iii) the
constitutive equation for the so-called �diffusive� particle flux; and (iv) the linear momentum equation
governing the local mass-average velocity. The analysis which follows examines the plausibility of the re-
sulting predictions of the radial particle distribution within the annular space, as well as the direction of the
radial pressure gradient (relative to the direction of the interstitial flow) required to maintain the steady
fluid motion. Although the accepted radial migration/suspension flow equations predict a plausible spatial
particle distribution in the annular region, they nevertheless predict the local pressure gradient to be in-
variant to the direction of the interstitial flow, and to depend upon the viscosity gradient––both conclusions
being in conflict with Darcy�s law for flow through a �stationary� bed of particles, which would be expected
to apply to our example problem. This predictive failure of the foregoing diffusion model suggests the need
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for a significant modification of the suspension-scale momentum equation, at least in circumstances where
large particle concentration gradients exist.
� 2002 Published by Elsevier Science Ltd.
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1. Introduction

Leighton and Acrivos (1986) observed the existence of cross-streamline migration of suspended
particles in concentrated suspensions of spheres subjected to a macroscopically inhomogeneous,
albeit unidirectional, shear flow––a phenomenon that was later termed �shear-induced diffusion�
(Leighton and Acrivos, 1987). According to this phenomenon, in the presence of gradients in the
suspension-scale shear rate the particulate and fluid phases (species) move with different velocities,
resulting in a net migration of the suspended particles relative to the surrounding fluid. Several
computational models (e.g., Stokesian dynamics, cf. Bossis and Brady, 1988; Nott and Brady,
1994) as well as various phenomenological models have been proposed in an attempt to quantify
particle migration phenomena in suspension-flow situations other than inhomogeneous unidi-
rectional shear flows. A widely accepted model of this lateral migration phenomenon attributes
the disparity existing between the respective phase velocities and the local velocity v of the sus-
pension as a whole to a �diffusional� flux, the latter animated by the existence of both suspension-
scale shear and particle concentration gradients. Unidirectional or quasi-unidirectional flows have
been extensively investigated in the past (Schaflinger et al., 1990; Nir and Acrivos, 1990; Philips
et al., 1992; Koh et al., 1994; Acrivos et al., 1993). Zhang and Acrivos (1994) addressed the
viscous resuspension of heavy (i.e., non-neutrally buoyant) particles in fully developed laminar
pipe flow, extending the unidirectional model to non-one-dimensional flows. Miskin et al. (1999)
investigated the stability of a two-dimensional resuspension flow. The initial treatment of
Leighton and Acrivos (1987) employed a diffusional model to phenomenologically quantify their
experimental unidirectional flow observations. Their interpretation was entirely kinematical in
nature. In particular, an adjoint momentum equation was neither required nor addressed. In an
attempt to extend the analysis to other flow configurations, subsequent researchers adopted an
invariant tensorial form for the diffusional aspect of the process, in addition to including a mo-
mentum equation for the mass-averaged velocity, as required to achieve closure (Schaflinger et al.,
1990; Zhang and Acrivos, 1994; Miskin et al., 1999).

The following comprehensive set of equations have been adopted by many researchers to model
lateral migration phenomena in inertia-free suspensions (see Eqs. (10)–(13) of Zhang and Acrivos
(1994), and Eqs. (4), (5), (8) of Miskin et al. (1999)):

(i) momentum:

rp ¼ lr2vþ 2ðrlÞ � S; ð1aÞ
(ii) overall mass or volume conservation:

r � v ¼ 0; ð1bÞ
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(iii) particle conservation:

o/
ot

þr � n/ ¼ 0; n/ ¼ /vþ j/; j/ ¼ �D/r/ � Dcr _cc: ð1cÞ

The first member of the above trio represents the low Reynolds number linear momentum
equation for a Newtonian continuum possessing a locally variable viscosity, wherein v is the mass-
average velocity, p the pressure, l the local suspension viscosity, and S ¼ ð1=2ÞðrvþrvTÞ the
shear-rate dyadic––each measured at the suspension scale. The second equation, representing the
overall continuity equation, incorporates the fact that the particles and fluid possess the same
densities, so that the mass density q is uniform throughout the suspension for all time. The third
equation is a mass (or, equivalently, volumetric) conservation equation for the particulate phase,
with / the local volumetric concentration of suspended particles, n/ the total volumetric particle
flux––consisting of a convective volumetric particle flux /v and a �diffusive� volumetric particle
flux j/. The above constitutive equation for the diffusive contribution, due to Leighton and Ac-
rivos (1987), embodies both concentration and shear diffusivities, while supposing Brownian
motion to be absent. Here, _cc ¼ ð2S : SÞ1=2 is a positive scalar representing a characteristic local
shear rate based on the second invariant of the shear-rate dyadic, whereas D/ and Dc are, res-
pectively, the concentration and shear-induced diffusion coefficients.

The functional forms of the /-dependencies of the viscosity and diffusivity coefficients varies
slightly from author to author (e.g., Krieger, 1972; Philips et al., 1992; Zhang and Acrivos, 1994).
We adopt here the respective formulations suggested by Zhang and Acrivos (1994):

l ¼ l0 1

�
þ 1:5/
1� ð/=/�Þ

�2
; ð2aÞ

D/ ¼ a2 _cc/2f ð/;/�Þ; f ð/;/�Þ ¼ 1

3

�
þ 1

6
expð8:8/Þ þ 0:6

l
dl
d/

�
; ð2bÞ

Dc ¼ 0:6a2/2 ð2cÞ
with l0 the interstitial fluid viscosity, a the particle radius, and /� the solid-phase volume fraction
above which the suspension can no longer flow (chosen in the subsequent calculations to be 0.58,
as in the work of Zhang and Acrivos (1994)). Below, we solve the preceding system of equations
for the radial flow case described in Abstract.

2. Radial flow

Let R1 and R2, respectively denote the inner and outer radii of the permeable shells. We suppose
that the radial flow occurs at a constant volumetric flow rate Q (which will be taken to be positive
for outflow and negative for inflow). Obviously, a steady state will eventually be reached, in which
the particles will presumably tend to accumulate closer to the outer wall when Q > 0 and, con-
versely, to the inner wall when Q < 0. The existence of a steady state requires that no flux of the
particulate phase occur at any radial position, since the bounding walls do not permit particle
penetration. On the other hand, the interstitial fluid phase will seep between the particles and
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through the porous boundaries at a steady rate. As such, relative motion occurs locally between
the particulate and fluid phases, just as in the case of conventional lateral migration phenomena
and flow through porous media.

Since the flow rate Q refers the volume-average flow rate of the suspension, the volume- (or
equivalent mass-) average radial velocity component vr ¼ vrðrÞ at any point r (R1 < r < R2) can
easily be derived from the continuity Eq. (1b) alone as

vr ¼
Q

4pr2
: ð3Þ

Hence, with ir a unit vector in the radial direction,

S ¼ Q
4pr3

ðI� 3irirÞ; _cc ¼
ffiffiffi
3

p
jQj

2pr3
: ð4Þ

Requiring that / � /ðrÞ be time independent as a consequence of the assumed steady state yields
a simplified form of Eq. (1c), namely

vr/ � D/
d/
dr

� Dc
d _cc
dr

¼ 0 ð5Þ

expressing the fact that the total flux n/ of the particulate phase vanishes for all r.
Introduction of (2a), (2b), (2c), (3) and (4) into (5) results in the following dimensionless first-

order equation for /:

f ð/;/�Þd/
dr̂r

� 1:8

r̂r
¼ ðsgnQÞ

2
ffiffiffi
3

p r̂r
/
; ð6Þ

where r̂r ¼ r=a is the dimensionless radial coordinate scaled with the particle radius; sgnQ ¼ Q=jQj
is either þ1 or )1 according as Q is positive or negative. Both the flow direction and /� play key
roles in the properties of the resulting solution. Since particles do not leave the annular gap bet-
ween the spherical shells, their total volume Vs, say, (assumed given) is a prescribed constant,
independent of the flow conditions. Hence, the following global condition imposed upon / must
be satisfied:

Z bRR2

bRR1

4pr̂r2/ðr̂rÞdr̂r ¼ Vs
a3

; ð7Þ

where bRRi ¼ Ri=a (i ¼ 1; 2).
In combination, Eqs. (6) and (7) render unique the solution for /ðr̂rÞ within the annular domain.

Numerical solution of (6), following the assumption of an arbitrary value of / at bRR1 (unknown a
priori), is straightforward. By such means, a trial-and-error procedure was used until (7) was
satisfied. Computations were performed until successive values of / differed by no more than
0.1%. Figs. 1a and b, and 2a and b address the respective cases of positive and negative flow rates
for different values of Vs. (As will be shown a posteriori, the explicit value chosen for Vs has no
effect upon the validity of our general conclusions below.)

For the case Q > 0, Fig. 1a and b, illustrate the resulting particle distributions for both small
and large values of bRR1, namely 5 and 100 particle radii, respectively. These figures reveal that,
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Fig. 1. (a) The volumetric particle concentration distribution / for positive flow rates (Q > 0), and for an inner wall

radius (made dimensionless with the suspended particle radius) of bRR1 ¼ 5. A rapid increase of concentration occurs

within a single particle radius, leveling off at an asymptotic value of /� ¼ 0:58, the maximum particulate fraction

beyond which the suspension can no longer flow. The particle concentration gradient is positive over the whole r̂r-range.
(b) The volumetric particle concentration distribution / for positive flow rates (Q > 0), and for an inner wall radius

(made dimensionless with the suspended particle radius) of bRR1 ¼ 100. A rapid increase of concentration occurs within a

single particle radius, leveling off at an asymptotic value of /� ¼ 0:58, the maximum particulate fraction beyond which

the suspension can no longer flow. A sharp boundary exists between the suspension and the clear supernatant fluid. The

particle concentration gradient is positive over the whole r̂r-range.

Fig. 2. (a) The volumetric particle concentration distribution / for negative flow rates (Q < 0), and for an inner wall

radius (made dimensionless with the suspended particle radius) of bRR1 ¼ 5. A rapid decrease of concentration occurs

within a single particle radius. The radial particle concentration gradient is negative over the entire r̂r-range. (b) The
volumetric particle concentration distribution / for negative flow rates (Q < 0), and for an inner wall radius (made

dimensionless with the suspended particle radius) of bRR1 ¼ 100. A rapid decrease of concentration occurs within a single

particle radius. A sharp boundary exists between the suspension and the clear supernatant fluid. The particle con-

centration gradient is negative over the entire r̂r-range.
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beginning at the inner sphere surface, the particle concentration at first experiences a very sharp
increase with radial distance over a distance of the order of a particle radius. Beyond that point
the particle concentration levels off, asymptotically attaining the maximum concentration of
/� ¼ 0:58. Thus, for bRR1 values larger than 100, essentially all of the particles congregate near the
outer wall, creating a relatively sharp boundary between the suspension layer and the clear fluid.
As such, it closely mimics a porous medium. The boundary location relative to the outer wall is
simply determined by the total volume Vs occupied by the trapped particles. In addition, Fig. 1a
and b reveal the radial particle concentration gradient, d/=dr̂r to be positive over the entire r̂r-
range. Similar conclusions can be drawn from Fig. 2a and b, which address the converse case of
negative flow rates. Here, however, particles tend to congregate near the inner wall, while the
radial particle concentration gradient d/=dr̂r is negative over the entire r̂r-range.

Knowledge of the particle distribution now enables Eq. (1a) to be solved for the pressure
gradient. Towards this end, introduce Eq. (3) into (1a) to obtain

dp
dr

¼ � dl
d/

Q
pr3

d/
dr

; ð8Þ

since r2v ¼ 0 for radially symmetric flows. For Q > 0 we found that d/=dr̂r > 0 for all r̂r. Hence,
since dl=d/ > 0, it follows that dp=dr̂r < 0––a plausible result, since a diminution in pressure in
the direction of flow is obviously required to maintain the flow. However, in the converse radial
inflow case, namely Q < 0, we found that d/=dr̂r < 0, again requiring that dp=dr̂r < 0 according to
Eq. (8). This implies that the pressure increases in the direction of flow, in clear contradiction to
Darcy�s law for interstitial fluid motion relative to a fixed bed of particles! In addition, the local
pressure gradient depends upon the suspension viscosity gradient, whereas were Darcy�s law as-
sumed to apply in present circumstances, the local pressure gradient should depend (linearly) only
upon the insterstitial viscosity itself, not the suspension-scale viscosity gradient!

3. Final remarks

Several lessons can be gleaned from the simple example outlined above. Despite the plausible
concentration distribution predicted by the theory, it is questionable whether such distributions of
particulate matter can be derived entirely from kinematical considerations alone (recall that this
distribution was derived solely from Eqs. (1b) and (1c))––independently of the suspension-scale
dynamics as embodied in the momentum Eq. (1a). In particular, when the suspension is closely
packed, interparticle forces must affect the particle distribution in a fashion similar to that of an
elastic porous medium subjected to a pressure gradient (see, for example the extensive review by
Verruijt (1969)). In this context it is prudent to exercise caution when attempting to apply the
system of Eqs. (1a)–(1c) significantly beyond their original scope (Leighton and Acrivos, 1987). In
extending the theory to such cases one may suggest, for instance, that the diffusive flux needs to
incorporate pressure gradient effects, much as such effects arise in the constitutive equation for the
diffusion flux in the case of molecular transport processes (Bird et al., 1960; de Groot and Mazur,
1962).

In addition, we recognize that the dense �deposit� formed by the suspended particles being
filtered at the appropriate permeable spherical surface appears intuitively to be indistinguishable
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from a porous medium of the type encountered in classical slurry filtration theory, except perhaps
for the fact that the porosity of the resulting porous medium is non-uniform (Tiller and Khatib,
1984; Tiller and Yeh, 1985; Tiller et al., 1996; Tiller and Kwon, 1998). Owing to this porous
medium analogy, it is natural to expect the resulting flow to obey Darcy�s law locally at any point
within the �filter cake�, with the local permeability determined by the local porosity. In contrast,
Eq. (8) indicates that the present momentum Eq. (1a) will predict local pressure gradients for any
diffusional model that furnishes negative concentration gradients for negative flow rates. Since the
existence of such negative gradients is an entirely plausible physical prediction for the case of
radial inflow, this suggests that the momentum equation must be modified from its present form.
In this context we may suggest (without proof) that the linear momentum Eq. (1a) needs to in-
corporate a stress contribution arising from the presence of strong particle concentration gradi-
ents, so that a Darcy-flow pressure gradient is attained at maximum packing (presumably the state
achieved at high rates jQj of inflow). A modification of the Navier–Stokes equation along these
lines was already suggested by Korteweg (1901), albeit for the case of two miscible fluids of
different densities, a restriction later modified by Joseph and Renardy (1993) to include species
concentration gradients in place of mass-density gradients. Similar extensions of the momentum
equation are also suggested by Ungarish (1993). Mechanics of mixtures may also provide
guidelines of how to construct a comprehensive theory for a two phase fluid. Much of the theo-
retical progress in the mechanics of mixtures up to the mid-1980 can be found in the appendices to
the book by Truesdell (1984) and the review articles by Bowen (1976), Atkin and Craine (1976)
and Bedford and Drumheller (1983). More recent discussions can be found in the treatises by
Rajagopal and Tao (1995) and Drew and Passman (1998).

Professor Andreas Acrivos of the City University of New York has raised an interesting
counter-argument upon reviewing, at our request, the foregoing criticism of the diffusion model of
lateral migration in terms of its apparent conflict with Darcy�s law. His interpretation of the
results for our case can be summarized by the following example: Assume that viscous fluid
occupies the space between two concentric balloons of radii R1 and R2 Let P1, be the pressure
within the small balloon, and P2 the pressure outside the big balloon. The resulting pressure
difference P1 � P2 creates a radial flow (3). A normal stress balance across the surface r ¼ R1

yields srrðR1Þ þ P1 ¼ 0 (assuming that the balloon possesses no hoop stress). A similar balance
applies across the surface r ¼ R1. Upon combining these one obtains P1 � P2 ¼ srrðR2Þ � srrðR1Þ.
However, from (3), for a Newtonian suspension

dsrr
dr

¼ 3l
pr4

Q: ð9Þ

Thus, for Q > 0 this yields the normal stress difference inequality srrðR2Þ � srrðR1Þ > 0, whence the
global pressure difference P1 � P2 is positive. The converse is obviously true for Q < 0. In essence,
Acrivos�s claim is that in circumstances where the porosity of the porous medium varies, the
direction in which the fluid flows depends upon the normal stress gradient, and that this direction
may differ, depending, inter alia, upon whether the radial velocity increases or decreases with r.

Notwithstanding, Darcy�s law, as it is currently understood, states specifically that the Darcy-
scale stress system in a porous medium is isotropic, and that the local flow direction is dominated
by the local pressure gradient (rather than by the local normal stress gradient, as is otherwise
suggested by (9)). Non-isotropy of the suspension-scale stress system, essential in the derivation of
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(9), is customarily considered to be of less significance in porous medium flows. Rather, aniso-
tropy is normally introduced via Brinkman�s equation (Brinkman, 1947) in an attempt to in-
corporate velocity-gradient corrections into Darcy�s law (albeit only second-order corrections,
presumably being no comparable to the first-order isotropic stresses).

Moreover, in limiting asymptotic circumstances for which the strong inequality ðR2 � R1Þ=
R1 � 1 obtains, the radially symmetric flow field becomes formally equipollent with that for a
homogeneous unidirectional flow between permeable walls. Moreover, the previously important
directional distinction between �inflow� and �outflow� disappears in this limit. Application of the
unsteady-state diffusion model Eq. (1c) to this configuration reveals that the particles, supposed
initially uniformly distributed between the walls, will migrate towards the downstream wall.
Eventually, when a steady state is attained, two distinct regions emerge––an upstream region
composed of the pure interstitial fluid, and a downstream region consisting of a suspension
characterized by a uniform volume fraction, one approaching /�, and where suspended particles
are effectively in �contact� with the downstream wall. According to Eq. (1a), within both regions
the normal stress gradient vanishes (as too does the pressure gradient) regardless of the depth of
the �deposited� suspension layer on this wall. This conclusion contrasts starkly with what one
would expect based upon a Darcy- or Darcy–Brinkman law analysis of the one-dimensional flow
case. Moreover, based upon the conception of the transport process as a Navier–Stokes flow
characterized by an inhomogeneous (suspension) viscosity, the steady-state solution predicts that
no energy will be dissipated in either of the two regions. That no work is required to drive the
interstitial fluid through the stagnant suspension is surely an aphysical prediction, again pointing
up a deficiency of the model!

In summary, if Acrivos�s interpretation is indeed tenable, it behooves one to seriously re-
examine the general validity of Darcy�s law in circumstances where gradients exist in both the
local porosity and seepage velocity. In particular, issues arise immediately in even the most ele-
mentary context involving flow through porous media during the act of forming the divergence of
the Darcy seepage velocity constitutive equation, v ¼ �ðk=l0Þrp. For in circumstances where the
porosity varies, this introduces the Darcy permeability gradient rk into the basic transport
equation, owing to the functional dependence of permeability upon porosity. However, we are
unaware of any comparable discussion of the incorporation of such gradient effects into the
corresponding viscosity coefficient appearing in Darcy�s law. The obvious reason for this is that
the pertinent Darcy viscosity coefficient is invariably taken to be the interstitial fluid viscosity l0

rather than the suspension viscosity l, although the two choices are far from being equivalent in
their physical consequences when porosity gradients exist. Similar questions may arise in regard to
the proper Brinkman viscosity coefficient l0 appearing in a modified Darcy–Brinkman equation
rp ¼ l0r2vþ 2ðrl0Þ � v� ðl0=kÞv (one may suggest to modify the Brinkman equation by adding
the second term on the r.h.s. to account for the variable viscosity field). Explicitly, is the con-
ventional interstitial fluid viscosity coefficient, l0 appearing in the Darcy contribution �ðl0=kÞv to
the pressure gradient rp the same as the so-called Brinkman viscosity coefficient, l0, say, ap-
pearing in the comparable Brinkman contribution l0r2v to the pressure gradient? (For some
theoretical and computational discussions of the Brinkman viscosity issue, see Freed and
Muthukumar, 1978; Koplik et al., 1983; Kim and Russell, 1985; Larson and Higdon, 1986;
Durlofsky and Brady, 1987; Chang and Acrivos, 1988; Martys et al., 1994; experimental data
bearing on the subject, are presented by Beavers and Joseph (1967), Beavers et al. (1970), and
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Givler and Altobelli (1994). The entire Brinkman viscosity issue was extensively reviewed several
years ago by Batycky (1995)).

Given the largely empirical basis of these controversial issues, the fundamental question posed
here is best left for the time being as a major unresolved question, one clearly requiring future
investigation. From this perspective, our example has merely focused on the need for such fun-
damental studies.
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